ТЕПЛОМАССООБМЕН

Контрольная работа №2

Контрольные вопросы

 

 

7. В чем сущность подобия физических процессов? Сформулируйте общие условия подобия.

 

Ответ:

В общем случае понятие подобия физических явлений сводится к следующим положениям:

а)         Понятие подобия в отношении физических явлений применимо только к явлениям одного и того же рода, которые качественно одинаковы и аналитически описываются уравнениями, одинаковыми как по форме, так и по содержанию.

Если же математическое описание двух каких-либо явлений одинаково по форме, но различно по физическому содержанию, то такие явления называются аналогичными. Такая аналогия существует, например, между процессами теплопроводности, электропроводности и диффузии.

б)         Обязательной   предпосылкой   подобия   физических   явлений должно быть геометрическое подобие. Последнее означает, что подобные явления всегда протекают в геометрически подобных системах.

в)         При анализе подобных явлений сопоставлять между собой можно только однородные величины и лишь в сходственных точках пространства и в сходственные моменты времени.

Однородными называются такие величины, которые имеют один и тот же физический смысл и одинаковую размерность.

г) Наконец, подобие двух физических явлений означает подобие всех величин, характеризующих рассматриваемые явления. Это значит, что в сходственных точках пространства и в сходственные моменты времени любая величина φ' первого явления пропорциональна однородной с ней величине φ" второго явления, т. е.

φ'’ =cφφ’

Коэффициент пропорциональности сφ называется константой (постоянной) подобия; ни от координат, ни от времени сφ не зависит. При этом каждая физическая величина φ имеет свою постоянную подобия cφ, численно отличную от других. Чтобы знать, к какой величине относится постоянная подобия, при каждой из них ставится соответствующий индекс.

Таким образом, сущность подобия двух явлений означает подобие   полей   одноименных   физических   величин,   определяющих эти явления.

Основные положения теории подобия можно сформулировать в виде трех теорем. Первая теорема подобия устанавливает связь между постоянными подобия и позволяет выявить числа подобия. В общей форме эта теорема формулируется так: подобные между собой процессы имеют одинаковые числа подобия.

На основании второй теоремы подобия зависимость между переменными, характеризующими какой-либо процесс, может быть представлена в виде зависимости между числами подобия K1, K2, . . . , Kn:

f(K1, K2, . .   . , Кn) = 0.   (1)

Зависимость вида (1) называется уравнением подобия. Так как для всех подобных между собой процессов числа подобия сохраняют одно и то же значение, то уравнения подобия для них также одинаковы. Следовательно, представляя результаты какого-либо опыта в числах подобия, мы получим обобщенную зависимость, которая справедлива для всех подобных между собой процессов.

До сих пор рассматривались свойства подобных между собой явлений, когда подобие уже существует. Однако возможна и обратная постановка вопроса: какие условия необходимы и достаточны, чтобы процессы были подобны. На такой вопрос дает ответ третья теорема подобия, которая формулируется так: подобны те процессы, условия однозначности которых подобны, и числа подобия, составленные из величин, входящих в условия однозначности, должны иметь одинаковое численное значение.

На основании этой теоремы оказывается необходимым особо выделить числа подобия, составленные только из величин, входящих в условия однозначности. Они называются определяющими или критериями подобия. Инвариантность (одинаковость) определяющих чисел подобия является условием, которое должно быть выполнено для получения подобия. Одинаковость же чисел подобия, содержащих и другие величины, не входящие в условия однозначности, получается сама собой как следствие установившегося подобия; эти числа подобия называются определяемыми

 

Итак, теория подобия позволяет, не интегрируя дифференциальных уравнений, получить из них числа подобия и, используя опытные данные, установить уравнения подобия, которые справедливы для всех подобных между собой процессов.

 

К списку задач

Главная