Дисперсия света

§1 Способы наблюдения дисперсии.

Призматический и дифракционный спектры. Метод Рождественского.

Явление дисперсии заключается в том, что показатель преломления зависит от длины волны.

 

 

 

 

Спектр, показанный на рис. является призматическим. Фиолетовые волны преломляются сильнее красных, т.к. длина волны красных волн больше, чем у фиолетовых, а частота, соответственно, меньше, то показатель преломления красных волн будет меньше, чем у фиолетовых.

Призмы часто используются в различных спектроскопах (Спектроскоп (спектрометр, спектрограф) (от спектр и др. - греч. σκοπ?ω — смотрю) — оптический прибор для визуального наблюдения спектра излучения.)  Отличие спектрометра от спектрографа заключается в том, что в спектрометре происходит визуальное наблюдение спектра с помощью глаз, а в спектрографе используется какой-либо способ записи спектра – фотопластинка, самописец, фотоумножитель или фотоэлемент, цифровая фотокамера и т.п.  Те и другие используются для быстрого качественного спектрального анализа веществ в химии, металлургии (например, стилоскоп) и т. д).

Дисперсия света называется нормальной, если показатель преломления монотонно убывает с увеличением длины волны (возрастает с увеличением частоты).

 

 

 

В случае дисперсия, если

дисперсия света называется аномальной.

Нормальная дисперсия света наблюдается вдали от собственных линий поглощения, аномальная – в пределах полос или линий поглощения.

Описание: Спектросенситометр ИСП-73 (оптическая схема)

Оптическая схема спектросенситометра ИСП-73: 1 — источник света (ленточная лампа накаливания); 2 — двухлинзовый конденсор; 3 — дисковый затвор с выдержками 0,05, 0,2 и 1,0 сек; 4 — револьверный диск с набором дырчатых диафрагм; 5 — входная щель спектрографа; 6 — объектив коллиматора; 7 — призмы; 8 — объектив камеры спектрографа. (Источник: БСЭ).

Для изучения нормальной и аномальной дисперсии можно использовать метод скрещенных призм.

  Призма П1 – стеклянная, П2 – из вещества, дисперсия в котором исследуется.  Если бы призмы П2 не было бы, то на экране Э наблюдался бы спектр нормальной дисперсии стекла (рис. 1) . При наличии призмы П2 происходит искривление дисперсионной картины при нормальной дисперсии в П2, и разрыв искривленной дисперсионной картины – при аномальной дисперсии.

Метод скрещенных призм нельзя использовать в том случае, если  нас интересует  n паров и газов, показатель преломления которых близок к 1. В этом случае Д.С. Рождественский предложил вместо призмы П1 поставить интерферометр Жамена, в одно из плеч которого помещается запаянная трубочка с газом, в другое – пластинки, дисперсия которой известна. Вместо призмы П2 ставят дифракционный или призматический спектрограф ( - дифракционный спектр линейно зависит от λ).

§2 Электронная теория дисперсии света.

Аномальная и нормальная дисперсия света. Связь дисперсии и поглощения

Макроскопическая теория Максвелла не может объяснить дисперсию света. Из теории Максвелла следует, что, при μ = 1.

Для воды ε = 81, следовательно, , а в действительности  nв =1,33. Такое противоречие между теорией Максвелла и экспериментом возникает вследствие того, что мы правильно применяем формулу ε0 = 81, которая справедлива только в статическом поле (ω = 0). Молекулы воды постоянно ориентируются в переменном электрическом поле. Электрическое поле световой волны изменяется по гармоническому закону.

ε(ω) < ε(0), поэтому n(ω) < n(0). Т.е. для каждой частоты будет свой показатель преломления. Поэтому нужно учитывать зависимость n от частоты.

Явление дисперсии можно объяснить, рассматривая взаимодействие световой волны с веществом. Такое стало возможным благодаря классической электронной теории Лоренца.

Согласно классической электронной теории электроны в атоме совершают колебания под действием квазиупругой силы. Световая волн, падающая на диэлектрик, заставляет электроны, находящиеся в атоме этого диэлектрика, совершать вынужденные колебания, частота которых совпадает с частотой вынуждающей силы. Но электроны, движущиеся ускоренно излучают электромагнитные волны. Эти вторичны волны, излучаемые электронами атомов вещества, имеют ту же частоту, что и падающая волна. Начальные фазы могут различаться. Эти вторичные волны интерферируют с падающей волной, и в веществе распространяется результирующая волна, направление которой совпадает с направлением падающей волны, скорость которой зависит от частоты (а в вакууме равна скорости света). Следовательно, показатель преломления n зависит от частоты ω.

где χ – диэлектрическая восприимчивость вещества, Р – вектор поляризации (результирующий дипольный момент единицы объёма).

Согласно теории Максвелла

 при μ = 1.

В условиях, когда на вещество падает световая волна, электрическое поле изменяется столь быстро, что поляризуемость (нас будет интересовать только электронная, т.е.  индуцированная полем световой волны) не успевает изменяться за полем.  В этом случае

где n0количество атомов в единице объёма, РЕиндуцированный дипольный момент одного атома. Можно показать, что наиболее сильному воздействию электрического поля световой волны подвергаются наиболее слабо связанные с ядром электроны, так называемые оптические электроны. Для простоты считаем, что каждый атом содержит один оптический электрон. Тогда

х - смещение.

т.е. n зависит от смещения электронов в атоме, под действием поля световой волны. На электрон, находящийся в атоме действует также силы:

квазиупругая – из-за наличия связи электрона с ядром:

сила сопротивления

Вынуждающая сила со стороны световой волны

Под действием этих сил электрон начинает совершать вынужденные колебания

 

Для простоты рассмотрения будем пренебрегать затуханием колебаний. В этом случае

Из последней формулы видно, что n зависит от частоты падающего света, так же как и ε. Если ω0 > ω, то n   существует, если ω0 = ω, то n терпит разрыв 2-го рода. В том случае, если атом содержит несколько валентных электронов:

 

Если учесть затухание (β ≠ 0), то мы получаем формулу, которая даёт хорошее соответствие с экспериментальной кривой)

 

§3 Поглощение света.

Закон Бугера

Экспериментально было установлено, что свет, проходя через вещество поглощается. Особенно сильное поглощение наблюдается для тех длин волн, частоты которых совпадают с собственными частотами для данного вещества. Интенсивность света изменяется по закону:

где α – коэффициент поглощения,

I0интенсивность падающего света,

 - толщина поглощающего слоя.

Знак минус показывает, что dI и  имеют противоположные знаки, т.е. с ростом толщины поглощающего слоя интенсивность прошедшего света падает.

- закон Бугера

Если

то

Коэффициент поглощения α есть величина обратная величине пути в данном веществе, проходя который, свет уменьшает свою интенсивность в е раз.

Если растворить поглощающие свет вещество в растворителе, который не поглощает данный цвет, то коэффициент поглощения раствора будет прямо пропорционален длине поглощающего вещества, т.е.

Для разряженных газов спектр поглощения является линейчатым. Для газа в молекулярном состоянии спектр поглощения является полосатым. Для твердых диэлектриков спектр поглощения сплошной в определенном интервале частот. Все другие частоты диэлектрик будет пропускать.

 

 

К списку лекций

Главная