ФИЗИЧЕСКИЕ ОСНОВЫ ТЕРМОДИНАМИКИ

1. Первое начало термодинамики

§1. Внутренняя энергия

   Всякая термодинамическая система в любом состоянии обладает энергией, которая называется полной энергией. Полная энергия системы складывается из кинетической энергии движения системы как целого, потенциальной энергии системы как целого и внутренней энергии.

             h=0     

 Внутренняя энергия системы представляет сумму всех видов хаотического (теплового) движения молекул: потенциальную энергию из внутриатомных и внутриядерных движений. Внутренняя энергия является функцией состояния газа. Для данного состояния газа внутренняя  энергия определяется однозначно, то есть является определенной функцией.

   При переходе из одного состояния в другое внутренняя энергия системы изменяется. Но при  этом внутренняя энергия в новом состоянии не зависти от процесса, по которому  система перешла в данное состояние.

 

 

§2. Теплота и работа

     Возможны два различных способа изменения внутренней энергии термодинамической системы. Внутренняя энергия системы может изменяться в результате выполнения работы и в результате передачи системе тепла. Работа есть мера изменения механической энергии системы. При выполнении работы имеет место перемещения системы или отдельных макроскопических частей относительно друг друга. Например, вдвигая поршень в цилиндр, в котором  находиться газ, мы сжимаем газ, в результате чего его температура повышается, т.е. изменяется внутренняя энергия газа.

   Внутренняя энергия может изменяться и в результате теплообмена, т.е. сообщения газу некоторого количества теплоты Q.

     Отличие между теплотой и работой состоит в том, что теплота передаётся в результате целого ряда микроскопических процессов, при которых кинетическая энергия молекул более нагретого тела при столкновениях передаётся молекулам менее нагретого тела.

     Общее между теплотой и работой, что они являются функциями процесса, т. е. можно говорить о величине теплоты и роботы, когда происходит переход системы из состояния первого в состояние второе. Теплота и робота не является функцией состояния, в отличие от  внутренней энергии. Нельзя говорить, чему равна работа и теплота газа в состоянии 1, но о внутренней энергии в состоянии 1 говорить можно.

§3 I начало термодинамики

Допустим, что некоторая система (газ, заключённый в цилиндре под поршнем), обладая внутренней энергией, получила некоторое количество теплоты  Q, перейдя в новое состояние,  характеризуемой внутренней энергии U2, совершила работу А над внешней средой, т. е. против внешних сил. Количество теплоты считается положительным, когда оно подводится к системе, и отрицательным, когда забирается у системы. Работа положительна, когда она совершается газом против внешних сил, и отрицательна, когда она совершается над газом.

I начало термодинамики: Количество тепла (ΔQ), сообщённой системе идёт на увеличение внутренней энергии системы и на совершение системой работы (А) против внешних сил.

Запись I начало термодинамики в дифференциальной форме

      dU - бесконечно малое изменение внутренней энергии системы

      - элементарная работа,        - бесконечное малое количество теплоты.

     Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии равно нуля. Тогда 

т. е. вечный двигатель I рода, периодически действующий двигатель, который совершал бы большую работу, чем сообщённая ему извне энергия, невозможен (одна их формулировок I начало термодинамики).

§2 Число степеней свободы молекулы. Закон о равномерном

распределении энергии по степеням свободы молекулы

       Число степеней свободы: механической системы называется количество независимых величин, е помощью которых может быть задано положение системы. Одноатомный газ имеет три поступательные степени свободы і = 3, так как для описания положения такого газа в пространстве достаточно трёх координат (х, у, z).

Жесткой связью называется связь, при которой расстояние между атомами не изменяется. Двухатомные молекулы с жесткой связью (N2, O2, Н2) имеют 3 поступательные степени свободы и 2 вращательные степени свободы:  i=iпост +iвр=3 + 2=5.

Поступательные степени свободы связаны с движением молекулы как целого в пространстве, вращательные - с поворотом молекулы как целого. Вращение относительного осей координат x и z на угол  приведет к изменению положения молекул в пространстве, при вращении относительно оси у молекула не изменяет своё положение, следовательно, координата φy в данном случае не нужна. Трехатомная молекула с жёсткой связью обладает 6 степенями свободы

 i=iпост +iвр=3 + 3=6

Если связь между атомами не жесткая, то добавляются колебательные степени свободы. Для нелинейной молекулы ікол. = 3N - 6, где N - число атомов в молекуле.

     Независимо от общего числа степеней свободы молекул 3 степени свободы всегда поступательные. Ни одна из поступательных степеней не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем одинаковая энергия, равна 1/3 значения

       Больцман установил закон, согласно которому для статистической системы (т. е. для системы у которой число молекул велико), находящейся в состоянии термодинамического равновесия на каждую поступательную и вращательную степень свободы приходится в среднем кинематическая энергия, равная   1/2 kT, и на каждую колебательную степень свободы - в среднем энергия, равная kT. Колебательная степень свободы «обладает» вдвое большей энергией потому, что на нее приходится не только кинетическая энергия (как в случае поступательного и вращательного движения), но и потенциальная энергия, причем   таким образом средняя энергия молекулы

    Мы будем рассматривать молекулы с жесткой связью, поэтому
 
           

   так как в идеальном газе взаимная потенциальная энергия молекул  равна нулю (молекулы не взаимодействуют между собой), то внутренняя энергия 1 моля равна произведению средней энергии одной молекулы на число молекул в моле вещества, то есть на число Авогадро   

Для  молей газа

§3 Теплоемкость. Работа газа

   1. Удельная теплоемкость вещества – величина равная количеству теплоты, необходимому  для нагревания 1 кг вещества на 1К.

    Молярная теплоемкость С – величина равная количеству теплоты,  необходимому для нагревания 1 моля вещества на 1К.

    Связь молярной и удельной теплоемкости

     Различают теплоемкости при постоянном объеме  CV (v = const) и постоянном давлении Cp (p = const), если в процессе нагревания вещества его объем или давление поддерживается постоянным.

 

 

 

К списку лекций

Главная