§ 4 Внутренний фотоэффект. Фотоэлементы

Внутренний фотоэффект - перераспределение электронов по энергети­ческим уровням в диэлектриках я полупроводниках (но не в металлах) под действием света. Если энергия кванта hv падающего света превышает ширину запрещенной зоны в диэлектрике или полупроводнике, то электрон, погло­тивший квант, переходит из валентной зоны в зону проводимости. В результате этого перехода образуется пара носителей: в зоне проводимости электрон, а в валентной зоне - дырка. Таким образом, в зоне проводимости появляются носители заряда, и при включении полупроводника в цепь по ней будет протекать ток или при приложении внешнего электрического поля будет протекать ток, изменяю­щийся в зависимости от освещенности.

Внутренний фотоэффект приводит:

  1. К изменению концентрации носителей в зоне проводимости (т.е. изме­нению проводимости);
  2. Возникновению фото ЭДС.

 

На использовании внутреннего фотоэффекта основано действие фотоэлементов – устройств, преобразующих световую энергию в электрическую, или изменяющих свои свойства под действием падающего света.

Изменяющие свойства работают ка внутреннем фотоэффекте: фотосопротивления (ФС), фотодиоды (ФД), фототранзисторы (ФТ), фоторезисторы, фотомикросхемы. Оптоэлектронная пара - в одном корпусе заключены источ­ник света и фотоприемник - используются для гальванической развязки цепей.

Устройства, преобразующие световую энергию в электрическую, исполь­зуют вентильный фотоэффект (разновидность внутреннего фотоэффекта) - возникновение фото ЭДС на p-n переходе или на границе металла с полу­проводниками. Устройства на вентильном фотоэффекте используются в фото­аппаратах, в солнечных батареях, в калькуляторах, на спутниках, в некоторых домах. Фотоэлементы используются также в фотометрии, спектрометрии, в астрофизике, биологии и т.д.

Внешний фотоэффект используется в вакуумных фотоэлементах, фото­умножителях, в видиконах (трубки теле - и видеокамер) и т.д.

 

 

 

 

 







   Масса и импульс фотона. Давление света

  1. Фотон - это квант света. Согласно гипотезе световых квантов Эйнштейна, испускание, поглощение и распространение света происходит дискретными порциями (квантами), названными фотонами (фото – свет). Энергия фотона:

Эйнштейн получил формулу, связывающую массу и энергию. Формула Эйнштейна:

Для фотона Е= Е0, следовательно . Отсюда масса фотона:

Фотон отличается от макроскопических тел и элементарных частиц тем, что он является элементарной частицей света, которая в любой среде движет­ся со скоростью света и не имеет массы покоя m0фотона = 0.Масса покоя - это масса, которой обладает частица при V =0, т.о., покоящихся фотонов не суще­ствует. Если свет остановить, то это означает, что энергия света поглотится веществом и света не будет. Массу фотона следует считать полевой массой, это означает, что свет обладает массой связанной с элементарным полем све­товой волны. Фотон обладает энергией, но всякой энергия соответствует мас­са (это следует из ). Если понимать под Е энергию электромагнитного поля, то под m следует понимать массу электромагнитного поля световой вол­ны, т.о., поле, как и вещество, имеет энергию и массу. Поле - одна из форм су­ществования материи. Наличие у поля энергии и массы является доказательст­вом материальности электромагнитного поля.

  1. Помимо энергии и массы, фотон обладает импульсом Р. В общей тео­рии относительности получена связь между энергией и импульсом:

где с= 3 · 108 м/с,

m0 - масса покоя, т.к. для фотона m0 = 0, то. Е =ср, следовательно,

Из сказанного выше следует, что фотон, как и любая другая частица, об­ладает энергией, импульсом и массой. Эти корпускулярные характеристики фотона связаны с волновой характеристикой света – частотой:

Проявление корпускулярно-волновой двойственности света - свет яв­ляется волной и частицей.

Экспериментальным доказательством наличия у фотона импульса явля­ется световое давление. Излучение, падающее на поверхность тела, оказывает на него давление. Вектор   волны приводит в упорядоченное движение эле­ментарные заряды в веществе, а магнитное поле действует на эти заряды с силой Лоренца. Эта сила оказывается направленной в сторону распростране­ния излучения. Равнодействующая всех этих сил воспринимается как дав­ление, оказываемое излучением на тело. Это объяснение давления с волновой точки зрения. С точки зрения квантовой теории давление света на поверх­ность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.

 

Пусть свет падает на нормали к поверхности. Если в единицу времени (t = 1с) на единицу площади (S = 1м2) поверхности тела задает N фотонов, то при коэффициенте отражения

света от поверхности  ρ – N фотонов отразится, а (1 – ρ) N - поглотится. Каждый фотон, поглощенный поверхностью, передаст ей импульс

 а каждый отраженный

Давление света на поверхность равно импульсу, который передают по­верхности в 1 с N фотонов:       

где             - энергетическая освещенность - энергия всех фотонов, падаю­щая на единицу поверхности в единицу времени, ,  - объемная плотность энергии.

Давление света при нормальном падении

Давление света, если свет падает под углом і:

Число фотонов в единице объема (концентрация фотонов):

[n] = м-3.

Число фотонов, падающих в единицу времени на единицу площади:

Эффект Комптона

Еще одним эффектом, в котором проявляются корпускулярные свойства света, является эффект А. Комптона (1923 г.), заключающийся в изменении длины волны, рассеянного легкими атомами (парафин, графит, бор) рентге­новского излучения.

Схема опытов Комптона: монохроматические рентгеновские лучи, соз­даваемые рентгеновской трубкой А, проходят через диафрагмы Д и узким пучком направляются на легкое рассеивающее вещество В. Лучи, рассеянные на угол θ, регистрируются приемником рентгеновских лучей Пр. - рентгенов­ским спектрографом, в котором измеряется длина волны рассеянных рентге­новских лучей. Опыты Комптона показали, что длина волны λ’ рассеянного  света больше длины волны λ падающего свежа, причем разность λ’ – λ за­висит только от угла рассеяния θ:

- комптоновская длина волны, определяется массой исследуемого вещества.

Объяснение эффекта Комптона дано на основе квантовых представлений о           природе света.

В легких атомах электроны слабо связаны с ядрами, поэтому электроны можно считать свободным. Тогда эффект Комптона - результат упругого столкновения рентгеновских фотонов со свободными электронами. Для упру­гого столкновения выполняется закон сохранения энергии и закон сохранения импульса.

Закон сохранения энергии для эффекта Комптона (энергия системы до взаимодействия равняется энергия системы после взаимодействия)

где   - энергия падающего фотона,

m0c - энергия покоящегося электрона,

 - энергия рассеянного фотона,

+ m0c - энергия до взаимодействия.

Закон сохранения импульса для эффекта Комптона:

- импульс падающего фотона;

р' - импульс электрона отдачи;

- импульс рассеянного фотона.

Масса релятивистской частицы

Энергия

                                                                        (1)  

                                                                                (2)  

Возведем в квадрат и учтем, что

Преобразование

                                                    (3)

 Из (2) следует

                                                          (4)

                                                                      

Сравнивая (3) и (4) получим:

                                                            

Умножим на  и получим

Учтём

следовательно,

Корпускулярно-волновая двойственность свойств света

В таких опытах как интерференция, дифракция, поляризация, дисперсия проявляются волновые свойства света и для описания света используются волновые характеристика: λ,ν. В эффектах квантовой оптики: тепловое излу­чение, фотоэффект, фотохимическое действие света, давление света, эффект Комптона, свет проявляет себя как частица и для его описания используются корпускулярные характеристики: масса, импульс. Развитие оптики, вся совокупность оптических явлений показали, что свойства непрерывности, харак­терные для электромагнитного поля световой волны не следует противопос­тавлять свойствам дискретности, характерным для фотонов. Свет имеет сложные корпускулярно-волновые свойства: обладает одновременно и волновыми и квантовыми свойствами - корпускулярно-волновая дуализм (двойственность) свойств света.

Связь корпускулярных и волновых свойств света отражают формулы для энергии, импульса, массы фотона:

   

Волновые свойства играют определенную роль в закономерностях рас­пространения света, интерференции, дифракции, поляризации, а корпускуляр­ные в процессах взаимодействия света с веществом. Чем больше λ(меньше ν), тем меньше р и Е фотона и тем труднее обнаружить квантовые свойства света (например, фотоэффект происходит только при hv>Aвыx). Чем меньше λ (больше ν), тем труднее обнаружить волновые свойства света. Например, рентгеновские лучи λ ~ 10-10 м дифрагируют только на кристаллической ре­шетке Твердого тела.

Взаимосвязь между волновыми и корпускулярными  свойствами света объясняют с помощью статических методов.

Волновые свойства присущи не только большой совокупности фотонов, но и каждому фотону в отдельности.

 

К списку лекций

Главная