§ 4 Энергетическая светимость. Закон Стефана-Больцмана.

Закон смещения Вина

RЭ (интегральная энергетическая светимость) - энергетическая светимость определяет количество энергии, излучаемой с единичной поверхности за единицу времени во всем интервале частот от 0 до ∞ при данной температуре Т.

 - связь энергетической светимости и лу­чеиспускательной способности

[RЭ ] =Дж/(м2·с) = Вт/м2

Закон Й. Стефана (австрийский ученый) и Л. Больцмана (немецкий ученый)

где

σ = 5.67·10-8 Вт/(м2· К4) - постоянная Стефа­на-Больцмана.

Энергетическая светимость абсолютно черного тела пропорциональна четвертой степени термодинамической температуры.

Закон Стефана-Больцмана, определяя зависимость RЭ от температуры, не даёт ответа относительно спектрального состава излучения абсолютно черного тела. Из экспериментальных кривых зависимости rλот λ при различных Подпись: Рис. Зависимость лучеиспускательной способности rλ,Т абсолютно черного тела от длины волны λ при разных температурах     Т следует, что распределение энергии в спектре абсолютно черного тела являет­ся неравномерным. Все кривые имеют максимум, который с увеличением Т смещается в сторону коротких длин волн. Площадь, ограниченная кривой за­висимости rλот λ, равна RЭ (это следует из геометрического смысла интегра­ла) и пропорциональна Т4.

Закон смещения Вина (1864 - 1928): Длина, волны (λmax), на которую приходится максимум лучеиспускательной способности а.ч.т. при данной тем­пературе, обратно пропорциональна температуре Т.

b = 2,9· 10-3 м·К - постоянная Вина.

Смещение Вина происходит потому, что с ростом температуры максимум излучательной способности смещается в сторону коротких длин волн.

§ 5 Формула Рэлея-Джинса, формула Вина и ультрафиолетовая катастрофа

            Закон Стефана-Больцмана позволяет определять энергетическую свети­мость RЭ а.ч.т. по его температуре. Закон смещения Вина связывает темпера­туру тела с длиной волны, на которую приходятся максимальная лучеиспуска­тельная способность. Но ни тот, ни другой закон не решают основной задачи о том, как велика лучеиспускательная, способность, приходящаяся на каждую λ в спектре а.ч.т. при температуре Т. Для этого надо установить функциональ­ную зависимость rλ от λ и Т.

Основываясь на представлении о непрерывном характере испускания электромагнитных волн в законе равномерного распределения энергий по сте­пеням свободы, были получены две формулы для лучеиспускательной способ­ности а.ч.т.:

  •  Формула Вина

где а, b = const.

  • Формула Рэлея-Джинса

k = 1,38·10-23 Дж/K - постоянная Больцмана.

Опытная проверка показала, что для данной температуры формула Вина верна для коротких волн и даёт резкие расхождения с опытом в области длин­ных волн. Формула Рэлея-Джинса оказалась верна для длинных волн и не применима для коротких.

Исследование теплового излучения с помощью формулы Рэлея-Джинса показало, что в рамках классической физики нельзя решить вопрос о функции, характеризующей излучательную способность а.ч.т. Эта неудачная попытка объяснения законов излучения а.ч.т. с помощью аппарата классической физи­ки получила название “ультрафиолетовой катастрофы”.

Если попытаться вычислить RЭ с помощью формулы Рэлея-Джинса, то

  • ультрафиолетовая катастрофа

§6 Квантовая гипотеза и формула Планка.

В 1900 году М. Планк (немецкий ученый) выдвинул гипотезу, согласно которой испускание и поглощение энергии происходит не непрерывно, а оп­ределенными малыми порциями - квантами, причем энергия кванта пропор­циональна частоте колебаний (формула Планка):

h = 6,625·10-34 Дж·с - постоянная Планка или

где

Так как излучение происходит порциями, то энергия осциллятора (колеб­лющегося атома, электрона) Е принимает лишь значения кратные целому чис­лу элементарных порций энергии, то есть только дискретные значения

Е = n Ео = n hν.

ФОТОЭЛЕКТРИЧЕСКИЙ ЭФФЕКТ

Впервые влияние света на ход электрических процессов было изучено Герцем в 1887 году. Он проводил опыты с электрическим разрядником и об­наружил, что при облучении ультрафиолетовым излучением разряд происхо­дит при значительно меньшем напряжении.

 

 

 

В 1889-1895 гг. А.Г. Столетов изучал воздействие света на металлы, ис­пользуя следующую схему. Два электрода: катод К из исследуемого металла и анод А (в схеме Столетова – металлическая сетка,  пропускающая свет) в ваку­умной трубке подключены к батарее так, что с помощью сопротивления R можно изменять значение и знак подаваемого на них напряжения. При облу­чении цинкового катода в цепи протекал ток, регистрируемый миллиамперметром. Облучая катод светом различных длин волн, Столетов установил сле­дующие основные закономерности:

  • Наиболее сильное действие оказывает ультрафиолетовое излучение;
  • Под действием света из катода вырываются отрицательные заряды;
  • Сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Ленард и Томсон в 1898 году измерили удельный заряд (е/m), вырывае­мых частиц, и  оказалось, что он равняется удельному заряду электрона, следо­вательно, из катода вырываются электроны.

§ 2 Внешний фотоэффект. Три закона внешнего фотоэффекта

Внешним фотоэффектом называется испускание электронов веществом под действием света. Электроны, вылетающие из вещества при внешнем фо­тоэффекте, называются фотоэлектронами, а образуемый ими ток называется фототоком.

 

 С помощью схемы Столетова  была получена следующая зависимость фото­тока от приложенного напряжения при неизменном световом потоке Ф (то есть была получена ВАХ – вольт- амперная характеристика):

 

 При некотором напряжении UН фототок достигает насыщения Iн – все электроны, испускаемые катодом, достигают анода, следовательно, сила тока насыщения Iн определяется количеством электронов, испускаемых катодом в единицу времени под действием света. Число высвобождаемых фотоэлектро­нов пропорционально числу падающих на поверхность катода квантов света. А количество квантов света определяется световым потоком Ф, падающим на катод. Число фотонов N, падающих за время t на поверхность определяется по формуле:   

где W – энергия излучения, получаемая поверхностью за время Δt,

- энергия фотона,

Фесветовой поток (мощность излучения).

1-й закон внешнего фотоэффекта (закон Столетова):

При фиксированной частоте падающего света фототок насыщения пропорционален падающему световому потоку:

Iнас ~ Ф, ν = const

 

 

 

 

 

Uз - задерживающее напряжение - напряжение, при котором ни одному электрону не удается долететь до анода. Следовательно, закон сохранения энергии в этом случае можно записать: энергия вылетающих электронов равна задерживающей энергии электрического поля

следовательно, можно найти максимальную скорость вылетающих фотоэлектронов Vmax

2- й закон фотоэффекта: максимальная начальная скорость Vmax фото­электронов не зависит от интенсивности падающего света (от Ф), а определя­ется только его частотой ν

 3- й закон фотоэффекта: для каждого вещества существует "красная граница'' фотоэффекта, то есть минимальная частота νкp, зависящая от химической природы вещества и состояния его поверхности, при которой ещё возможен внешний фотоэффект.

Второй и третий законы фотоэффекта нельзя объяснить с помощью вол­новой природы света (или классической электромагнитной теории света). Со­гласно этой теории вырывание электронов проводимости из металла является результатом их "раскачивания" электромагнитным полем световой волны. При увеличении интенсивности света (Ф) должна увеличиваться энергия, переда­ваемая электроном металла, следовательно, должна увеличиваться Vmax, а это противоречат 2-му закону фотоэффекта.

Так как по волновой теории энергия, передаваемая электромагнитным полем пропорциональна интенсивности света (Ф), то свет любой; частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла, то есть красной границы фотоэффекта не существовало бы, что про­тиворечит 3-му закону фотоэффекта. Внешний фотоэффект является безынерционным. А волновая теория не может объяснить его безынерционность.

§ 3 Уравнение Эйнштейна для внешнего фотоэффекта.

Работа выхода

В 1905 году А. Эйнштейн объяснил фотоэффект на основании квантовых представлений. Согласно Эйнштейну, свет не только испускается квантами в соответствии с гипотезой Планка, но распространяется в пространстве и поглощается веществом отдельными порциями - квантами с энергией E0 = hv. Кванты электромагнитного излучения называются фотонами.

Уравнение Эйнштейна (закон сохранения энергии для внешнего фото­эффекта):

Энергия падающего фотона hv расходуется на вырывание электрона из металла, то есть на работу выхода Авых, и на сообщение вылетевшему фотоэлектрону кинетической энергии .

Наименьшая энергия, которую необходимо сообщить электрону для того, чтобы удалить его из твердого тела в вакуум называется работой выхода.

Так как энергия Ферм к ЕF зависит от температуры и ЕF, также изменяется при изменении температуры, то, следовательно, Авых зависит от температуры.

Кроме того, работа выхода очень чувствительна к чистоте поверхности. Нанеся на поверхность пленку (Са, Sг, Ва) на W Авых уменьшается с 4,5 эВ для чистого W до 1,5 ÷ 2 эВ для примесного W.

Уравнение Эйнштейна позволяет объяснить вcе три закона внешнего фо­тоэффекта,        

1-й закон: каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интен­сивности (Ф) света

2-й закон: Vmax ~ ν и т.к. Авых не зависит от Ф, то и Vmax не зависит от Ф

3-й закон: При уменьшении ν уменьшается Vmax и при ν = ν0  Vmax = 0, следовательно, 0 = Авых, следовательно,  т.е. существует минимальная частота, начиная с которой возможен внешний фотоэффект.

 

К списку лекций

Главная